Development and technical validation of tetramer staining for use as a biomarker for assessing gluten-specific T cells in clinical studies

Will McAuliffe,1 Lynn Kisselbach,2 Angelina Bisconte,2 William Kwok,3 Deborah Phippard,2 Jose Estevam,2 Glennda M. Smithson1

1Takeda Pharmaceuticals International Co., Cambridge, MA, USA; 2Precision for Medicine; 3Benaroya Research Institute at Virginia Mason, Seattle, WA, USA

Introduction

- Gluten-challenges in subjects with celiac disease results in a transient upregulation of gluten-specific CD4+ T cells in the blood. Despite the increase, these cells are quite rare requiring a selective and sensitive assay for detection.

Method and results

- We have developed a 12-colour tetramer flow assay to enable detection and immunophenotyping of the gluten α-I/α-II CD4+ T cells in the blood.

Figure 1. Experimental procedure

Step 1. Separation and storage of PBMCs
- For clinical application, trial sites can collect whole blood
- PBMCs isolate using SepMate™ tubes – Ficoll
- PBMCs frozen to maintain viability and allow batch testing
- Longitudinal samples from each subject to be tested together

Step 2. Gliadin monomers are tetramerized with streptavidin phycoerythrin (PECy7) fluorophore Tetramers are pooled for staining
- Tetramer α I (GLQPGPFPEPQ)
- Tetramer α II (POPELPYPQPE)

Step 3. Isolation of CD4+ T cells from thawed PBMCs
- PBMCs are thawed and CD4+ cells isolated via magnetic bead based separation
- Post purity >95% prior to staining

Step 4. Stain isolated CD4+ T cells
- Controls for staining include:
 - Unstained samples to measure auto-fluorescence
 - Single-colour controls, entire antibody panel minus 1 stain for each marker
 - PBMCs frozen to maintain viability and allow batch testing

Step 5. T cell stain full antibody panel
- This includes C3D3, CD4, CD38, B7, tetramer, CD95RA, CD69, Alpha, a4, CCR7, CD27, lineage depletion (CD11c, CD14, CD45, CD62L) and live/dead viability dye

Step 6. Detection with BD LSRFortesa™ 5-S成为一名18 colour system
- Flow cytometry with a ThermoFACSFlow™ C8 analyser

Table 1. Assay validation parameters with pre-set acceptance criteria

Table 2. Assay criteria were met for the validation parameters

Conclusions

- This gliadin α-I/α-II DQ2 tetramer flow cytometric assay was developed and validated to be sensitive and selective. Technical validation of the assay was successfully met and the assay performs within the precision parameters.

- This assay will enable characterization of the gliadin α-I/α-II CD4+ T cells in the blood for celiac patients, providing a more comprehensive evaluation of response to new therapies and may reduce invasive biopsy-based measurements.

References

Disclosures

GMS, RH and JG are employees of Takeda, LA. AB and DP are employees of Precision for Medicine. VM has no disclosures to report.

Acknowledgements

We would like to extend our thanks and appreciation to the teams at Takeda Pharmaceuticals, the Benaroya Research Institute and Precision for Medicine for their substantial contributions, completion of information, and ongoing commitment to quality.

Presented at the 18th International Celiac Disease Symposium • 4–7 September 2018 • Paris, France